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This paper is concerned with the theoretical behaviour of the laminar Ekman layer
and the family of related rotating problems that includes both the Bödewadt and the
von Kármán boundary-layer flows. Results from inviscid and viscous analyses are
presented. In both cases, within specific regions of the parameter space, it is shown
that the flows are absolutely unstable in the radial direction, i.e. disturbances grow
in time at every radial location within these regions. Outside these regions, the flows
are convectively unstable or stable. The absolute or convective nature of the flows is
determined by examining the branch-point singularities of the dispersion relation. The
onset of absolute instability is consistent with available experimental observations of
the onset of laminar–turbulent transition in these flows.

1. Introduction
F. Nansen observed that the drift of surface ice was angled at 20–40◦ to the right

of the wind direction (in the northern hemisphere), and correctly attributed this
effect to the fact that the Coriolis forces introduced by the rotation of the Earth
are not negligible compared to the slow drift velocities. Based on this suggestion,
Ekman (1905) analysed the problem of a wind-driven rotating flow, resulting from
balanced pressure gradient, Coriolis and frictional forces. Ekman showed that the flow
has a boundary-layer structure, within which the mean velocity can be represented
by a vector that changes length exponentially with depth and changes angle linearly
with depth; the so-called Ekman spiral.

Although boundary-layer velocity profiles that approximate to the Ekman layer oc-
cur in the atmospheric boundary layer and in wind-driven surface layers of the ocean,
turbulence always plays a role in atmospheric and oceanic boundary layers because
of rough boundary surfaces. Unsteadiness of the mean flow and thermal effects may
also be important. Here, only steady laminar mean flows will be considered, but the
following study of rotating boundary-layer flows may have applications to geophys-
ical flows. The similarities between the laminar Ekman layer and the von Kármán
boundary layer (the steady axisymmetric incompressible flow due to an infinite disk
rotating in still fluid; von Kármán 1921) are well established; see, for example,
Tatro & Mollö-Christensen (1967), Faller (1991), Lingwood (1995). The susceptibility
of both these flows to inviscid crossflow instability (often referred to as type-1 in-
stability) is to be expected from the similarly inflectional mean velocity component.
Crossflow instability was first noticed by Smith (1947) in the rotating-disk flow and
then by Gray (1952) in the flow over a swept wing, where it manifested itself as a
striped pattern fixed to the wing surface consisting of a series of stationary vortices
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in the boundary layer. Evidence of crossflow instability of the von Kármán and Ek-
man boundary layers is given by Gregory, Stuart & Walker (1955) and Faller (1963),
respectively. Both these flows also have a second convectively unstable mode, which
is often referred to as a type-2 mode, that is dominant at low Reynolds numbers and
stable in the inviscid limit.

The recent theoretical study of the stability of the von Kármán boundary layer
by Lingwood (1995) discovered an absolute instability, produced by a coalescence
of the inviscidly unstable mode and a third mode that is spatially damped and
inwardly propagating. The absolute instability has been confirmed experimentally by
Lingwood (1996a) and it is suggested that this instability mechanism is responsible for
the onset of nonlinear behaviour and laminar–turbulent transition. This discovery, and
the general similarities between the von Kármán and the Ekman boundary layers,
prompted the study presented here. As discussed by Huerre & Monkewitz (1990),
the response of the flow to impulsive forcing shows whether it is convectively or
absolutely unstable. If the response to the transient disturbance grows with time at a
fixed location in space, then the flow is absolutely unstable. Following the work of
Briggs (1964) and Bers (1975) in the field of plasma physics, absolute instability can
be identified by singularities in the dispersion relationship that occur when modes
associated with waves propagating in opposite directions coalesce. Such points have
become known as pinch points. It is usual in linear stability analysis to choose either
temporal or spatial theories. Temporal theory assumes that the disturbances grow or
decay with time from an initial spatial distribution. This implies that the wavenumber
is real and that the frequency is complex. Spatial theory, however, assumes that the
frequency is real and that the wavenumber is complex. Thus, the disturbances evolve
in space from an initial temporal distribution. Where absolute instability is suspected
it is necessary to perform a spatio-temporal analysis.

Both the linear Ekman layer and the von Kármán flow are exact solutions of the
Navier–Stokes equations, which is an attractive feature for theoretical analyses. The
Ekman layer has the further advantage that it is strictly parallel. Both flows have
constant boundary-layer thicknesses and are therefore parallel in the physical sense
but, while the von Kármán boundary layer has a Reynolds number that varies with
radius (due to the radius-dependent characteristic velocity), the Ekman layer can have
constant geostrophic velocity giving a single Reynolds-number definition of the flow.
Thus, the need to account for downstream growth of the boundary layer or to make a
local parallel-flow approximation to reduce the governing partial differential equations
to a more amenable ordinary differential set is unnecessary. Therefore, the Ekman
layer makes a good model flow for theoretical studies. Experimentally, an Ekman
layer can be established by modifying the von Kármán flow with the introduction
of a geostrophic velocity in the main body of the fluid. If the fluid at infinity is in
rigid-body rotation, then the linear Ekman layer is approached as the differential
rotation rate between the disk and the body of fluid becomes small compared with
the system rotation rate, because it is in this limit that the nonlinear inertial forces
are negligible compared to the Coriolis forces, and the radius simultaneously tends
to large values to maintain a geostrophic flow. If the fluid at infinity is a potential
vortex, sustained by an applied radial pressure gradient, then again the linear Ekman
layer is approached as the nonlinear inertial forces become negligible compared to
the Coriolis forces, which requires that the product of the radius and rotation rate is
much larger than the geostrophic velocity. In either case the geostrophic velocity is
dependent on the radius, the flow is no longer defined by a single Reynolds number,
and is therefore no longer strictly parallel.
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Faller (1963) and Tatro & Mollö-Christensen (1967) carried out experiments, in
which a rotating fluid contained a sink on the central axis of rotation and distributed
sources round the outer edge. Further experimental and theoretical studies of the
motion produced by sources and sinks in a fluid rotating about a vertical axis in a
tank were performed by Barcilon (1967) and Hide (1968). If there is a closed curve
in the plane perpendicular to the axis of rotation through which there is a net flux
of mass, Hide (1968) showed that the net transport of fluid occurs within both the
Stewartson sidewall layers (Stewartson 1957) and the horizontal-wall layers, having
an Ekman-layer structure. These experiments showed the presence of instability waves
in the Ekman layers, where the Rossby number (the ratio of convective to Coriolis
terms) was small, which have been successfully analysed by neglecting the nonlinear
inertial terms from the mean flow equations and assuming a constant geostrophic
velocity (Lilly 1966; Faller & Kaylor 1966; Spooner & Criminale 1982; Marlatt
& Biringen 1994). Marlatt & Biringen (1995) describe a numerical simulation of
secondary instability of the type-2 mode.

Batchelor (1951) discussed qualitatively, and Rogers & Lance (1960) and Faller
(1991) obtained solutions for, the mean flow of a wide class of boundary-layer
flows established between a fluid at infinity in a state of rigid-body rotation and a
surface with a differential rotation rate. Particular cases of this family of flows are
the Bödewadt, Ekman and von Kármán boundary-layer flows. As mentioned above,
the Ekman layer is produced in this family of flows when the boundary and the
fluid at infinity approach the same rotation rate and the radius tends to infinity.
Bödewadt (1940) studied the flow produced over an infinite stationary plane in fluid
rotating with uniform angular velocity at an infinite distance from the plane; a problem
that has an exact solution of the Navier–Stokes equations for the mean flow. In the
von Kármán boundary-layer flow, fluid is thrown radially outwards due to the action
of centrifugal forces and is replaced by a downwards axial flow. On the other hand in
the Bödewadt flow, there is an equilibrium of centrifugal and radial pressure-gradient
forces in the fluid rotating an infinite distance above the plane but the centrifugal
forces are reduced within the boundary layer, due to viscous action, and the axially
independent radial pressure gradient causes a radial flow that is predominantly
inwards and a consequent (from continuity arguments) upwards axial flow.

The structure of the paper is as follows. A brief description of the linear Ekman
layer solution of the Navier–Stokes equations for the mean flow is given in §2. An
analysis of the family of flows with the main body of fluid in rigid-body rotation is
given in §3, followed by the results in §4, and concluding remarks are given in §5.

2. The Ekman layer
Ekman (1905) considered the flow in terms of a constant eddy viscosity, but the

analysis is directly applicable to laminar flows by replacing the eddy viscosity with a
constant dynamic viscosity. Furthermore, the analysis can be applied to a layer above
a rigid boundary (to suit an atmospheric flow above the Earth’s surface), as well as to
one below a free surface. For example, consider a large body of fluid at rest relative
to a uniformly rotating boundary that is set into motion by a uniform pressure
gradient (modified to incorporate effects of gravity and centrifugal force), which is
then balanced by the Coriolis force. If the pressure gradient lies in the (x∗,y∗)-plane
(where the plane rotates about the z∗-axis at angular velocity Ω∗, and asterisks will
henceforth be used to denote dimensional quantities) with components (P ∗x , 0), then
the equations giving the mean velocity components (U∗,V ∗) in the Ekman layer near
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Figure 1. (a) Mean velocity profiles for the Ekman layer flow. (b) Mean velocity profiles plotted as
an Ekman spiral.

the boundary (z∗ = 0) are

− 2Ω∗V ∗ = −P
∗
x

ρ∗
+ ν∗

∂2U∗

∂z∗2
, (2.1)

2Ω∗U∗ = ν∗
∂2V ∗

∂z∗2
, (2.2)

where ρ∗ and ν∗ are the fluid density and kinematic viscosity, respectively. There
are no-slip boundary conditions at z∗ = 0 and the geostrophic velocity at large z∗

is V ∗(z∗ → ∞) ≡ V ∗∞ = P ∗x /(2ρ
∗Ω∗). The non-dimensionalized analytic solution to

(2.1)–(2.2) is

U(z) =
U∗

V ∗∞
= −e−z cos z, (2.3)

V (z) =
V ∗

V ∗∞
= 1− e−z cos z, (2.4)

where z = z∗/l∗ and l∗ = (ν∗/Ω∗)1/2. Figure 1 shows the mean velocity components
plotted against the axial coordinate in (a) and as an Ekman spiral in (b). The velocity
near z = 0 is linear in z and inclined at 45◦ in a clockwise direction from the direction
of the body force due to the applied pressure gradient.

The Reynolds number for this flow is

Re =
V ∗∞l

∗

ν∗
=

P ∗x
2ρ∗Ω∗(Ω∗ν∗)1/2

. (2.5)

The non-dimensional Navier–Stokes equation, in a frame rotating at Ω∗, and conti-
nuity equation are

∂Ũ

∂t
+ (Ũ · ∇)Ũ +

2

Re
k ∧ Ũ = −∇P̃ +

1

Re
∇2Ũ , (2.6)

∇ · Ũ = 0. (2.7)

Here, t is time, Ũ = [Ũ, Ṽ , W̃ ]T where the components of the vector are the
instantaneous velocities each composed from a sum of the mean velocity and a
small perturbation velocity, P̃ is the instantaneous pressure, k is the unit vector in
the z-direction and ∇2 is the Laplacian operator. The non-dimensionalizing velocity,
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pressure and time scales are V ∗∞, ρ∗V ∗2∞ and l∗/V ∗∞, respectively. Subtracting the mean
flow from (2.6), linearizing with respect to the perturbation quantities and neglecting
terms of order Re−2 and higher results in equations that are separable in x, y and
t (without any parallel-flow approximation) and perturbation quantities that can be
expressed in normal-mode form

[u, v, w, p]T = [û(z), v̂(z), ŵ(z), p̂(z)]T ei(αx+βy−ωt) + c.c. (2.8)

Here, for example, û is the spectral representation of the perturbation u, α and β
are the wavenumbers in the x- and y-directions, respectively, ω is the disturbance
frequency and c.c. denotes complex conjugate. The perturbation equations are

iû(−ω + αU + βV ) +U ′ŵ − 2v̂/Re = −iαp̂− (γ2û− û′′)/Re, (2.9)

iv̂(−ω + αU + βV ) + V ′ŵ + 2û/Re = −iβp̂− (γ2v̂ − v̂′′)/Re, (2.10)

iŵ(−ω + αU + βV ) = −p̂′ − (γ2ŵ − ŵ′′)/Re, (2.11)

i(αû+ βv̂) + ŵ′ = 0, (2.12)

where γ2 = α2 + β2 and primes denotes differentiation with respect to z.

3. The theoretical model for the BEK flows
The model presented here describes a family of boundary-layer flows caused by a

differential rotation rate between a solid boundary, or disk, and an incompressible
fluid in rigid-body rotation above (see Faller 1991). As mentioned in §1, particular
cases of this family are the Bödewadt, Ekman and von Kármán boundary-layer
flows; hence, this family will be referred to as the BEK system. The radius of the
disk and the extent of the fluid above the disk are considered to be infinite, and
the disk and fluid rotate about the same vertical axis with angular velocities Ω∗D and
Ω∗F , respectively. The Bödewadt layer arises when the disk is stationary and the fluid
rotates, i.e. Ω∗D = 0 and Ω∗F 6= 0, for the Ekman layer Ω∗D ≈ Ω∗F and for the von
Kármán layer (the ‘rotating-disk’ boundary-layer flow described by Lingwood 1995,
1996a) Ω∗D 6= 0 and Ω∗F = 0. Between these particular examples are flows in which
both the disk and the fluid rotate, but with differing angular velocities. Although the
model is valid for counter- and co-rotating systems, only co-rotating systems will be
analysed here.

The continuity and momentum equations for the axisymmetric mean flow are
formulated in cylindrical-polar coordinates r∗, θ and z∗, in a frame rotating at Ω∗D ,
and can be written as

1

r∗
∂(r∗U∗)

∂r∗
+
∂W ∗

∂z∗
= 0, (3.1)

U∗
∂U∗

∂r∗
+W ∗ ∂U

∗

∂z∗
− V ∗2

r∗
− 2Ω∗DV

∗

= − 1

ρ∗
∂P ∗

∂r∗
+ ν∗

(
1

r∗
∂

∂r∗

(
r∗
∂U∗

∂r∗

)
+
∂2U∗

∂z∗2
− U∗

r∗2

)
, (3.2)

U∗
∂V ∗

∂r∗
+W ∗ ∂V

∗

∂z∗
− U∗V ∗

r∗
+ 2Ω∗DU

∗ = ν∗
(

1

r∗
∂

∂r∗

(
r∗
∂V ∗

∂r∗

)
+
∂2V ∗

∂z∗2
− V ∗

r∗2

)
, (3.3)

U∗
∂W ∗

∂r∗
+W ∗ ∂W

∗

∂z∗
= ν∗

(
1

r∗
∂

∂r∗

(
r∗
∂W ∗

∂r∗

)
+
∂2W ∗

∂z∗2

)
, (3.4)
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where U∗, V ∗ and W ∗ denote the mean radial, azimuthal and axial velocities, re-
spectively, and P ∗ is the mean pressure. By extension of the exact similarity solution
to the Navier–Stokes equations for the von Kármán flow (von Kármán 1921), it is
assumed that the dimensionless mean flow variables have the following form:

U(z) =
U∗

r∗∆Ω∗
=

U∗

r∗Ω∗Ro
, (3.5)

V (z) =
V ∗

r∗∆Ω∗
=

V ∗

r∗Ω∗Ro
, (3.6)

W (z) =
W ∗

l∗∆Ω∗
=

W ∗

l∗Ω∗Ro
, (3.7)

P (r, z) =
P ∗

ρ∗l∗2∆Ω∗2
=

P ∗

ρ∗l∗2Ω∗2Ro2
. (3.8)

Here, ∆Ω∗ = Ω∗F − Ω∗D , r and z are the dimensionless forms of r∗ and z∗, where
l∗ = (ν∗/Ω∗)1/2 is the non-dimensionalizing length scale, Ω∗ is a system rotation rate
and Ro is the Rossby number, which is a constant of the flow. The Rossby number
and Ω∗, respectively, are defined as

Ro =
∆Ω∗

Ω∗
, (3.9)

Ω∗ =
Ω∗F

2− Ro +
Ω∗D

2 + Ro
=
Ω∗F + Ω∗D

4
+

((
Ω∗F + Ω∗D

4

)2

+
(∆Ω∗)2

2

)1/2

. (3.10)

So, for example, for the Bödewadt layer Ro = 1 and Ω∗ = Ω∗F , for the Ekman layer
Ro = 0 and Ω∗ = Ω∗F = Ω∗D , and for the von Kármán layer Ro = −1 and Ω∗ = Ω∗D .

Substituting (3.5)–(3.8) into (3.1)–(3.4) gives the following non-dimensional equa-
tions for the mean flow:

2U +H ′ = 0, (3.11)

Ro(U2 +WU ′ − (V 2 − 1))− Co(V − 1)−U ′′ = 0, (3.12)

Ro(2UV +WV ′) + CoU − V ′′ = 0, (3.13)

Ro(WW ′ + P ′)−H ′′ = 0, (3.14)

where the prime denotes differentiation with respect to z and Co = 2Ω∗D/Ω
∗ =

2 − Ro − Ro2 is a Coriolis parameter. Figure 2 shows Co plotted against Ro; Co is
equal to 2 for the von Kármán and the Ekman layers, but Co = 0 for the Bödewadt
layer. This figure also gives the ratio Ω∗F/Ω

∗
D for −1 6 Ro 6 1, which tends to infinity

as Ro→ 1. To formulate (3.12) it is necessary to determine the radial pressure gradient
that appears in (3.2) from the relative circumferential flow as z → ∞, i.e. V → 1. By
assuming that U(z →∞) = U ′(z →∞) = U ′′(z →∞) = 0, (3.2) gives

Ro+ Co =
1

ρ∗Ω∗2r∗Ro

∂P ∗

∂r∗
, (3.15)

which is taken as a constant in z. Thus, the mean pressure has the form

P ∗ = ρ∗Ω∗2l∗2Ro2

(
r2(Ro+ Co)

2Ro
+ P (z) + const.

)
. (3.16)
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Equations (3.11)–(3.14) are solved subject to the boundary conditions

U(0) = V (0) = W (0) = 0, (3.17)

U(z →∞) = 0, V (z →∞) = 1. (3.18)

A double-precision fourth-order Runge–Kutta integrator and a Netwon–Raphson
searching method were used to solve the set of ordinary differential equations (3.11)–
(3.14) for U(z), V (z), W (z) and P (z). Figure 3 shows U, V and W plotted against z
for a range of Ro from −1 to 1. For the von Kármán flow, i.e. Ro = −1, only the
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Ro U ′(0) V ′(0)

−1.0 −0.5102 0.6159
−0.8 −0.6855 0.7699
−0.6 −0.8090 0.8701
−0.4 −0.8977 0.9375
−0.2 −0.9599 0.9797

0.0 −1.000 1.000
0.2 −1.0205 1.0000
0.4 −1.0229 0.9794
0.6 −1.0082 0.9372
0.8 −0.9783 0.8703
1.0 −0.9420 0.7729

Table 1. Values of U ′ and V ′ at z = 0 for various Ro,
which are needed to calculate the mean velocity profiles.

radial mean velocity profile is inflectional, but the azimuthal and axial profiles also
become inflectional with increasing Rossby number; for Ro = 1, U, V and W are all
inflectional. The sign of the dimensional velocities U∗, V ∗ and W ∗ depends on the
sign of Ro. For Ro exactly zero, (3.7) and (3.8) show that W ∗ = P ∗ = 0, whereas
U∗ and V ∗ are non-zero because r∗ → ∞ as Ro → 0 such that the denominators of
(3.5) and (3.6) are non-zero. These zero-Rossby-number solutions of the BEK system
are equivalent to the linear Ekman layer described in §2. The values of U ′ and V ′ at
z = 0 are given in table 1 to four decimal places for a range of Ro. Note that where
comparisons can be made between these tabulated values and previously calculated
values they agree. For example, these quantities are given for Ro = −1 in Schlichting
(1979), where tabulated values of U, V and W are also given for the Bödewadt layer.

A linear stability analysis is applied at a radius r∗a , by imposing infinitesimally small
disturbances on the mean flow. The local Reynolds number is Re, where

Re =
r∗a∆Ω

∗l∗

ν∗
= raRo, (3.19)

and the non-dimensionalizing velocity, pressure and time scales are r∗aΩ
∗Ro, ρ∗r∗2a Ω

∗2Ro2

and l∗/(r∗aΩ
∗Ro), respectively. Clearly, for negative Rossby number the Reynolds num-

ber is also negative, but this is purely a result of considering positive- and negative-
Rossby-number flows in a single model, and the results presented in §4 will be in
terms of positive Re (where the magnitude is taken for flows with negative Rossby
number) for all Ro. The instantaneous non-dimensional velocities and pressure are
given by

ū(r, θ, z, t) =
rRo

Re
U(z) + u(r, θ, z, t), (3.20)

v̄(r, θ, z, t) =
rRo

Re
V (z) + v(r, θ, z, t), (3.21)

w̄(r, θ, z, t) =
Ro

Re
W (z) + w(r, θ, z, t), (3.22)

p̄(r, θ, z, t) =
Ro2

Re2
P (r, z) + p(r, θ, z, t), (3.23)

where u, v, w and p are small perturbation quantities.
The dimensionless Navier–Stokes equations, in cylindrical-polar coordinates ro-
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tating at Ω∗D , are linearized with respect to the perturbation quantities. In order
to make the linearized equations separable in r, θ and t, it is necessary to ignore
variations in the Reynolds number with radius. This approximation, which is often
called the parallel-flow approximation, involves replacing the variable r that appears
in the coefficients of the linearized equations by the local Reynolds number Re.
Terms O((Ro/Re)2) are neglected and the perturbation quantities are assumed to
have normal-mode form, for example

u = û(z; α, β, ω;Re, Ro)ei(αr+β̄θ−ωt) + c.c., (3.24)

where û is the spectral representation of the radial perturbation velocity, α and
β̄ = βRe/Ro are the radial and azimuthal wavenumbers, respectively, ω is the
frequency of the disturbance in a frame rotating at Ω∗D , and c.c. denotes complex
conjugate. In the analysis of negative-Rossby-number flows, owing to the Rossby
number in the non-dimensionalizing time scale, ω takes the opposite sign to ω∗.
However, in §4 the results are presented with ω and ω∗ having the same sign as each
other for all Ro. Because of the circumferential periodicity of these flows the quantity
β̄ takes integer values. Similar equations to (3.24) define v̂, ŵ and p̂.

The perturbation equations may be written as a set of six first-order ordinary
differential equations in the following transformed variables:

φ1 = ᾱû+ βv̂, φ2 = ᾱû′ + βv̂′,
φ3 = ŵ, φ4 = p̂,
φ5 = ᾱv̂ − βû, φ6 = ᾱv̂′ − βû′,

 (3.25)

where ᾱ = α− iRo/Re. The perturbation equations are

φ′1 = φ2, (3.26)

φ′2 = (γ2 + iRe(αU + βV − ω) + RoU)φ1 + RoWφ2 + (ᾱU ′ + βV ′)Reφ3

+iγ̄2Reφ4 − (2RoV + Co)φ5, (3.27)

φ′3 = −iφ1, (3.28)

φ′4 = iRoWφ1/Re− iφ2/Re− (γ2 + iRe(αU + βV − ω) + RoW ′)φ3/Re, (3.29)

φ′5 = φ6, (3.30)

φ′6 = (2RoV + Co)φ1 + (ᾱV ′ − βU ′)Reφ3 + βRoφ4

+(γ2 + iRe(αU + βV − ω) + RoU)φ5 + RoWφ6, (3.31)

where γ2 = α2 + β2 and γ̄2 = αᾱ+ β2.
If the Coriolis and streamline curvature effects are neglected, the result can be

written as a fourth-order equation

(αU + βV −ω)(φ′′3 − γ2φ3)− (αU ′′ + βV ′′)φ3 + i(φ′′′′3 − 2γ2φ′′3 + γ4φ3)/Re = 0, (3.32)

and a coupled second-order equation

(αU + βV − ω)φ5 − i(αV ′ + βU ′)φ3 + i(φ′′5 − γ2φ5)/Re = 0, (3.33)

where the vertical vorticity component φ5 = αv̂ − βû, rather than the definition in
(3.25), because of the neglect of streamline curvature terms. If all terms of O(Ro/Re)
are also neglected and viscosity is considered to act only in the establishment of the
mean flow, equation (3.32) reduces to

(αU + βV − ω)(φ′′3 − γ2φ3)− (αU ′′ + βV ′′)φ3 = 0. (3.34)
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Note that (3.32), (3.33) and (3.34) are extensions of the usual Orr–Sommerfeld, Squire
and Rayleigh equations, respectively.

To distinguish between a convectively and an absolutely unstable response, the
governing equations, whether viscous or inviscid, are solved subject to an impulsive
azimuthal line forcing, with prescribed integer β̄ such that the vertical velocity at
z = 0 is given by

ŵ(0; r, θ, t) = δ(r − ra)δ(t)eiβ̄θ, (3.35)

where δ(r − ra) and δ(t) are the Dirac delta functions at ra and t = 0, respectively.
The response to point forcing can be obtained by summing over all integer values
of β̄. Where appropriate, the additional boundary conditions at z = 0 given by the
no-slip condition are

û(0; r, θ, t) = v̂(0; r, θ, t) = 0, (3.36)

and as z →∞ it is required that all perturbations decay.
The following assumes a viscous analysis, but it also applies to an inviscid analysis if

the Reynolds-number dependence is dropped. Solution of an inhomogeneous system
such as this is described in detail in Lingwood (1997), but suffice it to say that the
problem reduces to solving a Green’s function of the form

w(z; r, θ, t) =
eiβ̄θ

(2π)2

∫
F

∫
A

Φ(z; α, ω; β, Re, Ro)

∆0(α, ω; β, Re, Ro)
ei(α(r−ra)−ωt)dαdω, (3.37)

where Φ is a function of z formed from a combination of the independent solution
vectors of the governing ordinary differential equations (see Lingwood 1997), ∆0 =
0 is the dispersion relation, which is satisfied by the discrete eigenvalues of the
homogeneous problem (the unforced case) and A and F are inversion contours in the
α- and ω-planes, respectively. The discrete eigenvalues provide a mapping between
the α- and ω-planes, such that zeros of the dispersion relation in the α-plane are given
by

α = αj(ω, β;Re, Ro), j = 1, . . . ,M, (3.38)

and in the ω-plane zeros are given by

ω = ωj(α, β;Re, Ro), j = 1, . . . , N, (3.39)

where M and N are the number of discrete modes in the α- and ω-planes, respectively.
Discrete eigenvalues trace out paths in the α-plane (ω-plane) as ω (α) is varied.
Trajectories in the α-plane given by a predetermined ω-distribution (possibly complex)
will be referred to as spatial branches of the dispersion relation. Similarly, trajectories
in the ω-plane given by a predetermined α-distribution (possibly complex) will be
referred to as temporal branches. Note that the governing equations have a symmetry
property, whereby αj(ω, β;Re, Ro) 7→ −α∗j (−ω∗,−β∗;Re, Ro) and ωj(α, β;Re, Ro) 7→
−ω∗j (−α∗,−β∗;Re, Ro), where the asterisks indicate the complex conjugate. Thus,
trajectories of the dispersion relation given by (3.38) for ωr < 0 and βr < 0 (henceforth,
the subscripts r and i will be used for real and imaginary parts, respectively) are
symmetric with respect to the imaginary α-axis to those for ωr > 0 and βr > 0.
Similarly, trajectories given by (3.39) for αr < 0 and βr < 0 are symmetric about the
imaginary ω-axis to those for αr > 0 and βr > 0.

Briggs’ method (Briggs 1964) is used to calculate the time-asymptotic discrete
solution, due to the discrete poles of (3.37) (i.e. zeros of the dispersion relation).
Details of this method are given in Lingwood (1997), where it is shown that the
discrete response is sufficient to determine the nature of the instability. The discrete



Absolute instability of the Ekman layer and related rotating flows 415

response to (3.37) neglects the continuous contributions from branch cuts in the
α-plane, which give the z-structure of the response close to the source of the initial
perturbation and are caused by the complex square-roots taken to satisfy the boundary
conditions as z →∞.

For fixed β̄, Briggs’ criterion for absolute instability requires a branch-point sin-
gularity between two, or more, spatial branches of the dispersion relation, of which
at least two must lie in distinct halves of the α-planes when ωi is sufficiently large
and positive. Such singularities have become known as pinch points because inher-
ent in Briggs’ method is the use of analytic continuation to deflect the inversion
contours, and at these singularities the A-contour becomes pinched between the coa-
lescing spatial branches. The pinching frequency ωo is a branch point of the function
α(ω; β, Re, Ro) or, equivalently, α at the pinch point, αo, is a saddle point of the
function ωo(α; β, Re, Ro) and at this point ∂ω/∂α = 0, although this condition is not
sufficient for such points. If ωi > 0 at the pinch point the flow is absolutely unstable,
otherwise the flow is only convectively unstable or stable. A branch-point singularity
between two spatial branches that originate in the same half of the α-plane for large
positive ωi does not constitute a pinch point (even though ∂ω/∂α = 0 at such a point)
and does not cause an absolute instability. This sort of branch point results in a
second-order pole, which leads to transient algebraic growth that can be important if
the second-order pole is near neutral but ultimately behaves exponentially as dictated
by the sign of αi. This case will not be pursued here, but further details can be found
in Koch (1986) and Henningson & Schmid (1992).

The governing equation for the inviscid linear stability analysis is the Rayleigh
equation (3.34) and it has singularities at critical points, where αU(zc) + βV (zc) −
ω = 0. The Rayleigh equation has amplified and damped solutions in complex
conjugates pairs. However, physically relevant solutions match on to the solutions of
the viscous equations for large Reynolds number. Lin (1945a,b,c) showed that to get
the appropriate solutions, the path of integration must pass under the singularity if
Ū ′(zc) > 0, where Ū = (αU + βV )/(α2 + β2)1/2, or over the singularity if Ū ′(zc) < 0.
Following a method developed by Healey (1996), this condition was satisfied by
calculating Ū(z) and Ū ′′(z) for complex values of z. The eigenvalues were found
using a double-precision fixed-step-size fourth-order Runge–Kutta integrator (using
a path of integration that always passed on the correct side of singularities in
the inviscid case) and a Newton–Raphson linear search procedure. Gram–Schmidt
orthonormalization was used in the viscous analysis.

4. Results and discussion
The linear Ekman layer, which is described in §2, can be subjected to viscous

and inviscid stability analyses in the way described in the preceding section. That
is, the perturbation equations (2.9)–(2.12) can be written as six first-order ordinary
differential equations using the transformations given in (3.25) for the BEK system
or, neglecting viscous and Coriolis effects, they can be written as the Rayleigh
equation. The resulting equations can then be used to investigate the discrete time-
asymptotic impulse response to distinguish between convective and absolute instability
as described in §3. Figure 4 shows branches of the dispersion relation in the complex
ω- and α-planes for the linear Ekman layer. In this case, α is the wavenumber in the
x-direction, i.e. perpendicular to the geostrophic flow, and β is the wavenumber in
the y-direction, i.e. parallel to the geostrophic flow. Figure 4 (a) shows results from
a purely inviscid analysis and figure 4 (b) shows similar results from a sixth-order
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Figure 5. Neutral-stability curves (ωi = αi = 0) for stationary waves (ωr = 0) for the BEK system.
The convectively unstable regions lie within the curves.

viscous analysis, which includes Coriolis effects, at the same value of β as (a) and
at Re = 566. In both cases, there is a pinch point with positive ωo

i , which implies
that both are absolutely unstable in the x-direction. The pinch points occur due to a
coalescence between a spatially growing branch (for x less than x at the source) and a
spatially decaying branch (for x greater than x at the source). These branches separate
into the distinct halves of the α-plane as ωi → ∞, which qualifies the branch points
as pinch points. Furthermore, paths in the α-plane that pass through the pinch points
form cusps at the branch points in the ω-plane. This is a characteristic of a pinch
point that has been used by Kupfer, Bers & Ram (1987) to identify points of absolute
instability. The values of αo in the inviscid and viscous examples are very similar,
as is ωo

r , but ωo
i is significantly greater in the inviscid case. This is to be expected

from the absolute instability results for the von Kármán flow (Lingwood 1995), where
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ε
Ro Re α β (deg.)

−1.0 290.1 0.381 0.077 11.4
−0.5 160.9 0.467 0.117 14.1

0.0 116.3 0.528 0.137 14.5
0.5 75.9 0.544 0.140 14.4
1.0 27.4 0.487 0.115 13.3

Table 2. Approximate values of Re, α, β and ε at the noses of the marginal curves
for stationary waves in figure 5.

the degree of absolute instability (the size of ωo
i ) increases with Reynolds number.

As with the von Kármán boundary layer, the viscous results presented in figure
4 (b) approach the inviscid results in figure 4 (a) at large Reynolds number, and the
inviscid branches are the asymptotic limits of the viscous branches. These results also
correspond exactly to the zero-Rossby-number solution of the BEK system (discussed
below), where α and β revert to their definitions in §3: the radial and circumferential
wavenumbers, respectively.

Figure 5 shows marginal curves for convective instability of stationary modes,
i.e. disturbances with ω = 0, for various Rossby numbers in the BEK system. In
figure 5 (c) the curves are plotted against the wave angle ε = tan−1(β/αr). The
curves for Ro = −1 are essentially the same as those presented in figure 6 (b) of
Lingwood (1995). Clearly, as the Rossby number increases from the von Kármán
layer to the Bödewadt layer the stationary modes become increasingly unstable. As
discussed in Lingwood (1995), the marginal curves for the von Kármán flow consist
of two branches: branch 1 is inviscidly unstable and branch 2 is a balance between
viscous and Coriolis forces. For other Rossby numbers the curves also consist of
two branches. For flows with negative Rossby number the two convectively unstable
branches can be shown by causality arguments only to exist outwards from the
source, i.e. for r > ra, whereas for flows with positive Rossby number the two
convectively unstable branches exist inwards from the source (r < ra). For the Ekman
layer, the behaviour of the two branches follows the negative-Rossby-number flows
if Ro = 0−, i.e. if Ω∗F tends to Ω∗D from below and the radial mean velocity is
directed predominantly outwards, and follows the positive-Rossby-number flows if
Ro = 0+, i.e. if Ω∗F tends to Ω∗D from above and the radial mean velocity is directed
predominantly inwards. The marginal curves change with non-zero frequency. It has
been shown by Lilly (1966) and Melander (1983) that the most unstable mode for
the Ekman layer is a travelling branch-2 mode with a critical Reynolds number
of about 55 (ε ≈ 7.5◦) and 54.2 (ε ≈ 7.2◦), respectively, compared with Lilly’s
calculation of about 115 (116 in this study) for the onset of (branch-1) stationary
waves. The critical Reynolds number for convective instability of stationary waves in
the Ekman layer agrees quite closely with experimentally observed Reynolds numbers
of about 125 (Faller & Kaylor 1966). The instabilities in the Ekman layer observed
by Faller & Kaylor (1966) had a wave angle of about 14◦, which is consistent with
the stationary branch-1 inviscidly unstable waves. Tatro & Mollö-Christensen (1967)
observed branch-1 modes in the Ekman layer with almost constant wave angle of
14.6◦. Thus, although branch-2 travelling waves can have significantly lower critical
Reynolds numbers than stationary waves, it is the latter that are more commonly
observed in experiments. This fact could be due to greater receptivity of the boundary
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in figure 6 (d). Both branch points are pinch points, because as ωi → ∞ away from
the branch points the mappings in the α-plane separate into distinct halves of the
α-plane. That is, the branch points are a coalescence between two spatial branches:
one that propagates energy outwards from the source and one that propagates energy
inwards from the source. Furthermore, paths in the α-plane that pass through the
pinch points form cusps at the branch points in the ω-plane. In general, when more
than one pinch point exists, the one lying highest in the ω-plane dominates the time-
asymptotic response. However, for these parameters ωo

i is negative for both pinch
points (only very slightly for the higher pinch point), therefore neither constitutes an
absolute instability. The important point highlighted by figure 6 is that the behaviour
of at least two branch points must be monitored as parameters are varied.

Marginal curves for absolute instability (ωo
i = 0) are given in various planes in

figure 7 for Rossby numbers ranging from −1 to 1. Figure 7 (e) is separated into
two subplots for negative and positive Rossby numbers for clarity. Figure 7 (a) shows
the frequencies encompassed by the absolutely unstable regions. The dimensional
frequency is ω∗ = ωReΩ∗, where Ω∗ is a constant, so waves propagating in r (or Re)
retain constant values of ωrRe. As the Rossby number increases from −1, the critical
Reynolds number for the onset of absolute instability Rec decreases, the absolutely
unstable region increases, and for Ro ≈ 0.5 the onset occurs for stationary modes.
For positive Rossby numbers, stationary modes tend to be close to the critical. But as
Ro → −1 the frequency of waves at Rec becomes increasingly negative. Figure 7 (b)
shows only the Ro = 1 marginal curve and a second trajectory of branch points with
ωi = 0. The nature of this second family of branch points is given in figure 8, which
shows a selection of these branch points spanning a range of Reynolds numbers,
and therefore having varying values of β. The broken lines show the separation of
the two spatial branches involved in each branch point as ωi → ∞ away from the
value at the branch point. At Re = 25 and Re = 28 the branch points are of pinch
type, which is consistent with figure 6 because there (where Re = 27.4) both branch
points are pinch points. But for larger values of Re, the two spatial branches both
separate into the lower half-α-plane, and therefore the branch points in this second
family are no longer of pinch type and can be discounted from the description of
the absolute unstable regions. The low-Reynolds-number pinch points in this second
family have also been discounted because, for given β, the pinch points in the primary
family become absolutely unstable at lower Reynolds number or, equivalently, for
given β and Re the primary pinch points lie higher in the ω-plane. The absolutely
unstable region is depicted in the (β, Re)-plane in figure 7 (c) and the two families
of branch points for Ro = 1 are given in 7 (d). It becomes clear in figures 7 (e) and
(f) that by choosing the most critical curve of marginally absolutely unstable pinch
points (rather than remaining on the continuous curve that becomes subcritical at
Re ≈ 25 and then, at larger Re, gives non-pinching branch points), a discontinuity is
introduced into the curves for 1 6 Ro 6 0.9. Figure 7 (g) shows that, apart from the
high-Reynolds-number part of the curves for 1 6 Ro 6 0.8, the absolutely unstable
region for flows with negative Rossby number lies in the lower half-α-plane, while
the absolutely unstable region for flows with Ro > 0 lies in the upper half-α-plane .
Thus, for Ro < 0, a spatial branch that originates in the upper half of the α-plane,
i.e. an outwardly propagating mode, crosses into the lower half-plane, becoming
convectively unstable before becoming absolutely unstable at a pinch point. For these
flows, the qualitative instability behaviour is the same as that for the von Kármán
layer, which is described in Lingwood (1995, 1996a). In general, for Ro > 0, a spatial
branch that originates in the lower half of the α-plane, i.e. an inwardly propagating
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mode, crosses into the upper half-α-plane, becoming convectively unstable before
coalescing with a spatially damped outwardly propagating mode at a pinch point
and becoming absolutely unstable. However, for 1 6 Ro 6 0.8 and high Reynolds
numbers there are pinch points lying in the lower half-α-plane, which means that these
flows with positive Rossby number then follow the description given above for flows
with negative Rossby number. Since the Reynolds number for these pinch points is
a lot higher than the critical value, this feature is not physically relevant because the
absolute instability at lower Reynolds number will have already promoted the onset
of nonlinearity and possibly laminar–turbulent transition. Finally, the wave angles
for which the flows are absolutely unstable are shown in figure 7 (i).

Results from the inviscid analysis, i.e. using the Rayleigh equation, are presented
in figure 9, where loci of the pinch points with varying β are given. The pinch points
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in the inviscid analysis occur between the asymptotic Reynolds-number limits of the
branches involved in the pinch points in the viscous analysis. Where ωo

i is positive
the inviscid flow is absolutely unstable and the degree of absolute instability (the
size of ωo

i ) is shown to increase with increasing Ro, as in the viscous analysis. The
absolutely unstable range of β is very similar in the inviscid analysis to the range
at large Reynolds numbers in the viscous analysis; see figure 7 (c). In a comparable
way to the absolutely unstable frequencies in figure 7 (a), for −1 6 Ro 6 0− the
inviscid absolutely unstable frequencies tend to negative values at the large-β limit,
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while approaching zero or becoming positive at small β. On the other hand, for
0+ 6 Ro 6 1 the inviscid absolutely unstable frequencies tend to large positive values
at the large-β limit, but become negative at small β. Furthermore, the inviscid results
capture the branch-point behaviour at Ro ≈ 0.8, which caused the jump from one
Riemann sheet to another in the viscous analysis as the pinch points on one sheet first
became subcritical to those on the other and then, through further branch switching,
became non-pinching branch points. In the inviscid results there is a branch point in
the loci of the pinch points at Ro ≈ 0.8 and β ≈ 0.06, which leads to the absolute
instability persisting to negative β for Ro > 0.8 in the same way that the viscous
absolutely unstable region in figure 7 (b) does. Although not shown in figure 9 (b), the
negative-β limit of the inviscid absolutely unstable region for Ro = 1 is β ≈ −0.52.
Similar trends in αo and εo are shown in figure 9 (c–e) as in the viscous analysis. The
similarity between the viscous and inviscid absolute instability results is perhaps best
illustrated by figure 4, which applies equally to the zero-Rossby-number solution of
the BEK system as to the linear Ekman layer described in §2.

The onset of absolute instability, derived from the viscous analysis, for the various
flows is summarized in figure 10. The solid line gives the critical Reynolds number
for the onset of absolute instability as a function of Ro (with the lightly shaded part
denoting the unstable region) and the broken lines give the critical radii for the onset
of absolute instability, calculated from (3.19), as a function of Ro (with the darkly
shaded part denoting the unstable region). Table 3 lists the approximate critical values
for the onset of absolute instability (denoted by the subscript c).

For the BEK system, whether the Rossby number is positive or negative, the
Reynolds number increases radially outwards. Thus, for flows with negative Rossby
number, the laminar low-Reynolds-number region of the flow lies at small radii,
convective instability of outwardly propagating waves occurs at higher Reynolds
numbers (or larger radii), and the onset of absolute instability, which could pro-
mote nonlinearity and laminar–turbulent transition, occurs at a higher well-defined
Reynolds number. It appears that the behaviour of all the negative-Rossby-number
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Ro Rec βc ωc αc

−1.0 507.3 0.135 −0.0349 0.217−i0.122
−0.8 434.8 0.155 0.0393 −0.252−i0.142
−0.6 345.4 0.169 0.0418 −0.294−i0.164
−0.4 284.7 0.178 0.0425 −0.329−i0.180
−0.2 238.5 0.182 0.0413 −0.357−i0.191

0.0± 198.0 0.184 ±0.0397 0.379± i0.195
0.2 161.5 0.173 0.0314 0.393+i0.197
0.4 124.5 0.157 0.0199 0.403+i0.191
0.6 87.3 0.125 −0.00252 0.410+i0.176
0.8 51.4 0.0495 −0.0616 0.406+i0.141
0.9 34.5 −0.0417 −0.141 0.368+i0.118
1.0 21.6 −0.1174 −0.218 0.340+i0.0776

Table 3. Critical values for the onset of absolute instability in the BEK system.

flows is qualitatively similar to that of the von Kármán boundary-layer layer. Flows
with positive Rossby number are more complicated. The low-Reynolds-number re-
gion of the flow again lies at small radii, but the radial mean velocity is now directed
predominantly inwards (the axial mean flow is directed upwards) and the convective
instability at higher Reynolds numbers is now of inwardly propagating, rather than
outwardly-propagating, waves. From a purely convective viewpoint, this suggests that
disturbances within the boundary layer grow as they are swept inwards but, provided
their amplitudes are still sufficiently small, that they decay once they reach the stable
Reynolds numbers at smaller radii. The onset of absolute instability in these positive-
Rossby-number flows occurs at Reynolds numbers, and therefore radii, larger than
those for the onset of convective instability (although they occur closer and closer
together as the Bödewadt layer is approached). So, the general picture seems similar
to that for flows with negative Rossby number: a laminar inner region, surrounded
by a convectively unstable ring, surrounded by an absolutely unstable ring. However,
the path of a particular disturbance is somewhat different. A disturbance initiated
within the absolutely unstable region will grow in time at the initiation point (pos-
sibly triggering transition) and, assuming that the linear predictions are still useful,
the spatial envelope associated with this temporal growth will excite the flow both
inwards to and outwards from the source. Thus, the absolute instability may act as an
exciter for inwardly propagating waves that pass out of the absolutely unstable and
into the convectively unstable region and then into the stable low-Reynolds-number
region. The history of a disturbance suggests a picture of relaminarization along its
inward path.

Comparison between the absolute instability predicted by linear stability analysis
and experimental observations for the von Kármán boundary layer are given by
Lingwood (1995, 1996a). The onset of absolute instability was found to occur at
Re ≈ 510 (corrected here to about 507†) and the onset of transition is consistently
found by various experimentalists (see Lingwood 1995) at an average value of 513 with
only a 3% scatter around this value. Faller (1991), however, showed that transition
of the von Kármán boundary layer is possible at lower Reynolds numbers via
several nonlinear interaction mechanisms dependent upon the initial amplitude of

† In the course of this analysis, a small numerical error was found in the code used in
Lingwood (1995). Here the critical Reynolds number for the onset of absolute instability for
the von Kármán layer is corrected from 510.6 to 507.3.



Absolute instability of the Ekman layer and related rotating flows 425

excitation of type-2 disturbances by the free-stream flow. Presumably similar transition
mechanisms could operate in the other members of the BEK system before the onset
of absolute instability. The results presented here for the Ekman layer are applicable
to the Ekman layers produced in low-Rossby-number experiments, e.g. Faller (1963),
Tatro & Mollö-Christensen (1967) and Owen, Pincombe & Rogers (1985). In these
experiments the Ekman layers were produced over a rotating disk with a source of
fluid with radial velocity at the outer edge and a sink at the inner core (Owen et al.
1985 also studied the flow with the source at the centre and the sink at the outer
edge). In this configuration, the fluid outside the boundary layer has a potential-vortex
form, rather than fixed angular velocity, the radial flow is contained entirely within
the boundary layer, and there is no axial mean velocity. The potential-vortex form
implies that both the Rossby number and the Reynolds number are functions of
radius, and both increase with decreasing radius. The turbulent region lies at smaller
radius than the laminar region. Nevertheless, as the Rossby number tends to zero
the mean flow in these source–sink-generated Ekman layers tends to the analytic
solution for a linear Ekman layer described in §2, as does the zero-Rossby-number
BEK flow, described in §3. The governing perturbation equations for these three
cases also become exactly equivalent in the zero-Rossby-number limit. Most of the
experimental studies of the laminar Ekman layer have concentrated on establishing
the critical Reynolds number for convectively unstable waves and characterizing the
instabilities as branch-1 or branch-2 modes; the onset of laminar–turbulent transition
is not generally reported. However, Faller & Kaylor (1966) states Re ≈ 200 as an
approximate boundary between laminar and turbulent behaviour. Further, Owen et
al. (1985) found that for Re > 200 and radial outflow in their source–sink flow, the
circumferential velocity at large z departed from that predicted by linear theory for
laminar flow and took this as the onset of turbulent behaviour in the Ekman layer.
For both radial inflow and outflow they chose to define the onset of transition in the
Ekman layers as Re ≈ 180. These Reynolds number are close to the onset of absolute
instability at about 198 in the Ekman layer. Further supporting evidence of the
absolute instability in the Ekman layer is provided by Spooner & Criminale (1982),
where the evolution of a wave packet generated by a pulsed disturbance in a linear
Ekman layer is calculated using summation of discrete modes, including branch-1
and branch-2 modes. The group velocity (defined as the speed of the maximum of
the wave packet) parallel and perpendicular to the geostrophic velocity is given for
a range of Reynolds numbers. The group velocity of the branch-1 contribution to
the wave packet decreases with Reynolds number, with the component perpendicular
to the geostrophic velocity being only about 16.5% of the parallel component at
Re = 200 (this is calculated by interpolating between the given data). Thus, the wave
packet appears to propagate almost parallel to the geostrophic velocity, i.e. almost
in the azimuthal direction in the BEK system. This is suggestive of an absolute
instability in the direction normal to the geostrophic velocity, as found here, but the
group velocities calculated by Spooner & Criminale (1982) would not be expected to
tend to zero with the onset of absolute instability because they are defined, quite
correctly, at the maximum of the spatial envelope of the wave packet, which is in
general non-zero even in an absolutely unstable flow. Experimental observations of
the instability of the Bödewadt layer do not seem to be available, perhaps because it
is unstable to such low Reynolds numbers.
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5. Conclusions

The linear Ekman layer and the family of boundary-layer flows established by
a differential rotation rate between a disk and a fluid at infinity in rigid-body
rotation (which includes the Bödewadt, the Ekman and the von Kármán boundary
layers; the BEK system) have been investigated using linear stability theory. The
general convective nature of much of each of these flows is already known, but this
investigation has focused on the possibility of an absolute instability occurring in
some parameter range. Given sufficient time, even a weakly absolutely unstable flow
will cause a disturbance at a fixed point in space to grow to amplitudes large enough
to make the use of linear theory invalid. In contrast, a disturbance in a convectively
unstable flow is swept away as it grows, and the source area is ultimately left
undisturbed, and so the boundary layer remains basically laminar until the instability
wave has travelled far enough away to have grown to amplitudes sufficient to cause
nonlinearities. Hence, absolute instability is quite distinct from spatial instability and
is far more dangerous. In the absence of more dominant transition mechanisms, the
absolute instability mechanism may explain the onset of nonlinearity and laminar–
turbulent transition at a well-defined radial position in the BEK flows. Furthermore,
the presence of an absolute instability would imply that any asymptotic stability
analysis should be temporal as well as spatial.

In all cases, these flows have been found to be absolutely unstable in the direction
normal to the free-stream velocity (the radial direction in the BEK system) above
particular Reynolds numbers and for certain frequencies and wavenumbers of distur-
bance. For all but the Ekman layer (Ro = 0), which is parallel in the strict sense, the
parallel-flow approximation has been used in the viscous analyses. Inviscid results are
also presented that show in all cases that the absolute instability persists in the limit of
large Reynolds number. This persistence implies that the viscous and Coriolis effects,
which are both of order Re−1 and are therefore neglected in the Rayleigh equation,
are not primary in causing the absolute instability. Unlike the viscous analyses, which
in general employ the parallel-flow approximation and therefore are mathematically
inconsistent to order Re−1, the inviscid analyses are consistent and show that the
absolute instability is not an artifact of the parallel-flow approximation. It is expected
that the parallel-flow approximation will have some small numerical effect on the sta-
bility calculations, but that the general absolute instability characteristics discussed in
this paper are still relevant to the physical behaviour of the flows, as has been shown
for the particular case of the von Kármán flow (Lingwood 1995, 1996a) where the
onset of transition and absolute instability coincide. There is also some experimental
evidence (Faller & Kaylor 1966 and Owen et al. 1985) that the onset of transition
in the Ekman layer occurs at Re ≈180–200, which is consistent with the onset of
absolute instability at Re ≈ 198.

For the von Kármán boundary layer the absolute instability always occurs for
travelling (non-zero frequency) waves, but as the Rossby number is increased towards
the Bödewadt boundary layer the stationary waves also become absolutely unstable.
For the flow with Ro ≈ 0.5 the stationary waves are the first to become absolutely un-
stable. The stationary waves are of particular importance because they are excited by
unavoidable roughnesses on the surface of the disk, and are therefore often observed
in experiments as so-called crossflow vortices. With the increasingly inflectional nature
of the mean velocity profiles as Ro→ 1, the flows become increasingly unstable in both
the convective and absolute senses; for the Bödewadt layer the onset of convective
and absolute instability occurs almost simultaneously at very low Reynolds number.
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For all the flows the absolute instability is caused by a pinch point between a
spatially growing and a spatially damped branch of the dispersion relation. Apart
from the special case where the pinch point lies on the real wavenumber axis, this
must always be the case because in order for a branch point to be of pinch-type the
two spatial branches that coalesce must originate in separate halves of the complex
wavenumber plane for large positive imaginary frequency. In order to pinch, one of
these branches must cross the real wavenumber axis, becoming convectively (spatially)
unstable before pinching. So, the absolute instability always involves a branch of
the dispersion relation that from a convective viewpoint is damped, and therefore
uninteresting, and which has been ignored in previous studies for this reason. The
absolute instability mechanism may be relevant to other three-dimensional boundary
layers, for example the flow over swept wings; see Lingwood (1996b).

This work was performed while supported by a Research Fellowship at Pembroke
College, Cambridge.
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